

Performance of VDL Modes 2, 3 and 4

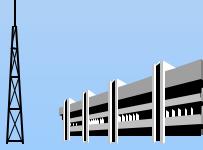
Steven Bretmersky*, Vijay K. Konangi* and Robert J. Kerczewski**

*Department of Electrical and Computer Engineering Cleveland State University Cleveland, Ohio 44115

** NASA Glenn Research Center Cleveland, Ohio 44135

Objective

To evaluate the performance of VDL Modes 2, 3, and 4 around a single ground station



VDL Modes

- VHF Digital Link (VDL) for communication between aircraft and ground stations
- Operate in the Data Link layer of the OSI model
- Use the Aeronautical VHF Band (118
- 137 MHz)
- 4 Modes are specified

The VDL Modes

Mode 1

- Carrier Sense Multiple Access (CSMA)
- AmplitudeModulated ShiftKeying (AM-MSK)
- 2,400 bits per second
- Connection-oriented
- Lacks support for priority
- Will not be implemented

Mode 2

- Carrier Sense Multiple Access (CSMA)
- Differential 8 Phase Shift Keying (D8PSK)
- 31,500 bits per second
- Connection-oriented
- Lacks support for priority

Mode 3

- Time Division Multiple Access (TDMA)
- Differential 8 Phase Shift Keying (D8PSK)
- 31,500 bits per second
- Acknowledged connection-less
- Supports Priority (4 levels)

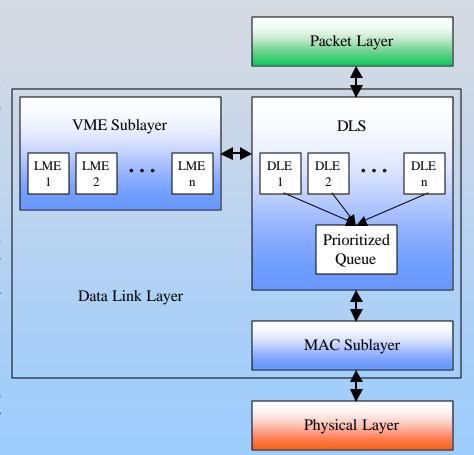
Mode 4

- Self-Organizing TDMA (STDMA)
- Gaussian-Filtered Frequency Shift Keying (GFSK)
- 19,200 bits per second
- Connection-oriented
- Built-in support for ADS-B

VDL Sublayers

A VDL system consists of several sublayers:

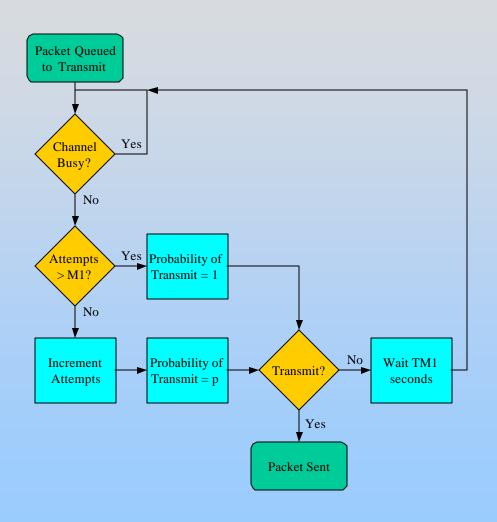
VDL Management Entity (VME)


Responsible for connection establishment and handoffs. Creates a Link Management Entity (LME) for each connection

Data Link Sublayer (DLS)

Manages data communication between the aircraft and ground station, providing the addressing and controlling link usage. Maintains a Data Link Entity (DLE) for each connection, and manages a prioritized queue shared by every DLE

Medium Access Control (MAC)


Responsible for determining when to transmit a packet using the link. Different MAC sublayer for each VDL Mode. VDL Mode 4 uses a VDL Mode 4 Specific Services (VSS) sublayer in conjunction with the MAC.

VDL Mode 2

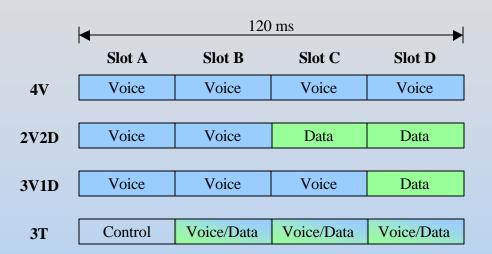
MAC Sublayer

- CSMA with backoff
- Maximum access attempts, M1 = 135
- Probability of transmission, p = 13/256
- Backoff time, TM1 = 4.5 ms

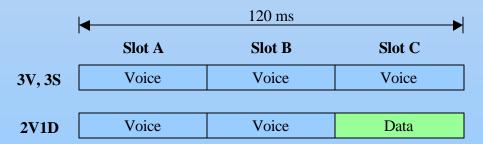
DLS Sublayer

- Connection-oriented point-to-point
 - Sliding window
 - Multi-selective reject
 - Dynamic retransmission timer
 - Link utilization
 - Largest retransmission count
- Connection-less broadcast

VDL Mode 3



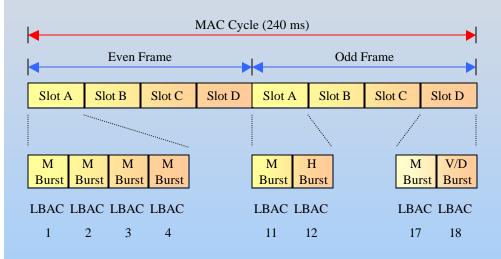
MAC Sublayer


- TDMA
 - Standard range 4 30ms slots per frame
 - Extended range 3 40ms slots per frame
 - Two frames per MAC cycle
- Supports voice
- Supports 4 levels of priority

DLS Sublayer

- Acknowledged connection-less point-topoint
 - Waits for acknowledgement before transmitting next frame
 - Acknowledgement partially handled by MAC
- Connection-less broadcast

Standard Range Configurations



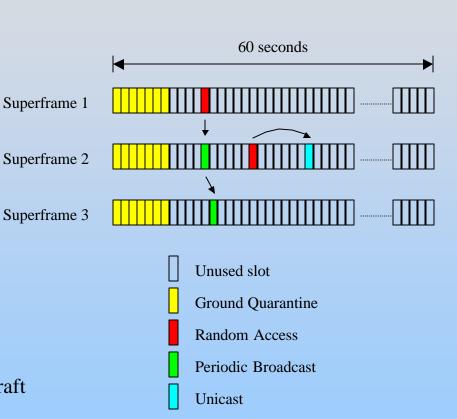
Extended Range Configurations

VDL Mode 3 (3T Data)

In both frames, Slots B and C are the same as Slot D

- 3 types of bursts
 - Management (M)
 - Handoff Check (H)
 - Voice/Data (V/D)
- 3 groups, one per V/D slot
- 18 Logical Burst Access Channels
 - Slot A
 - 4 M bursts, even frame
 - 1 M and 1 H burst, odd frame
 - Slots B, C, D
 - 1 M and 1 V/D burst
 - All control uplink and timing reference in LBAC 11 M burst
 - All other M bursts for aircraft use by random access, unless reserved for ACK

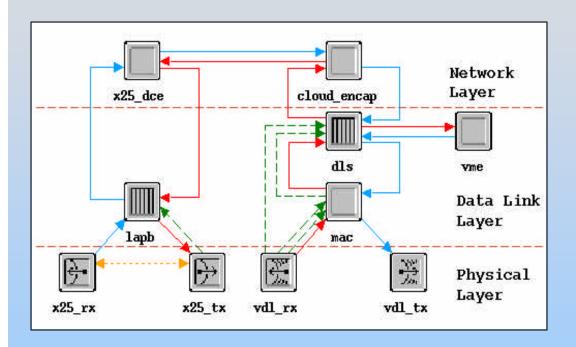
VDL Mode 4



MAC Sublayer

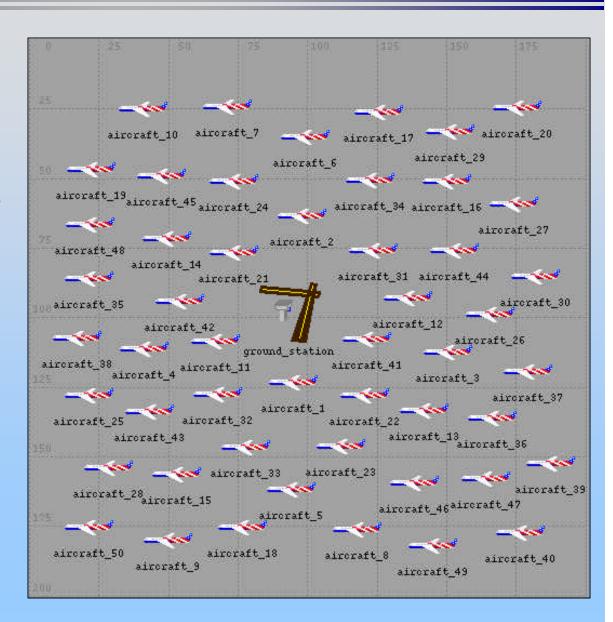
- STDMA
- 4500 slots per superframe, 1 SF per minute
- Each slot 13.3 ms, or 256 bits long
- Multiple protocols determine access
 - Reserved access
 - Periodic Broadcast
 - Unicast
 - Random access
 - Fixed access
 - Ground Quarantine
- Reserved slots can be reused by distant aircraft
 - Built-in support for ADS-B

DLS Sublayer

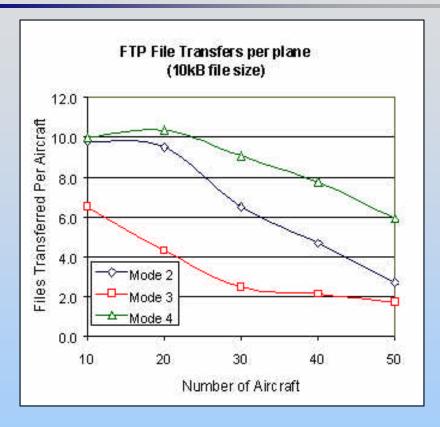

• Same as Mode 2

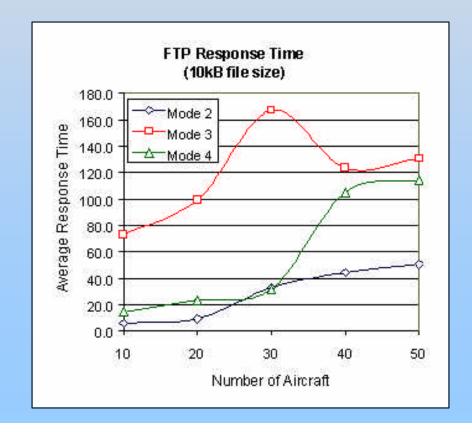
VDL Transceiver Model

The VDL transceiver model used by the aircraft and ground station


- X.25 Interface
 - Supports connection to an X.25 DTE
 - Uses a maximum packet size of 1024 octets, as per VDL SARPS
- VDL Interface
 - Contains the VME, DLS, and MAC processes

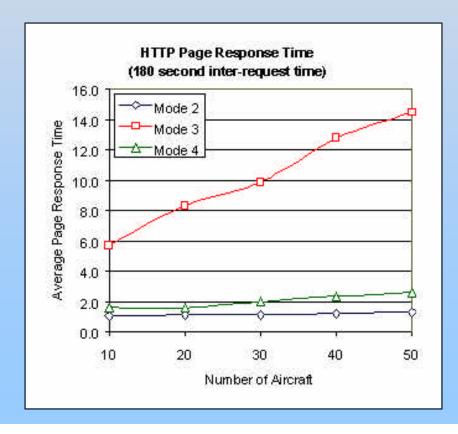
Simulation Scenario

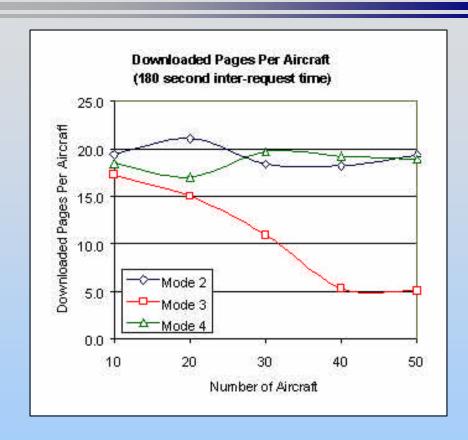

- Ground station modeled as a VDL transceiver connected to a TCP/IPbased server
- Aircraft contain the VDL transceiver connected to a TCP/IP client.
- Simulations with 10, 20, 30, 40, and 50 aircraft surrounding a single ground station.
- Internet applications FTP and HTTP were used to generate traffic.
- Each simulation for a period of 1 hour, in which all the aircraft were in contact with the ground station.


Results (FTP)

The FTP response times show that overall VDL Mode 2 has the lowest delays in this scenario, while VDL Mode 3 has the highest.

The FTP simulations with a 10 kB file size show that overall Mode 4 performs the best, with the most number of transfers per aircraft.





Results (HTTP)

The HTTP transfers with 180-second interrequest time showed VDL Modes 2 and 4 transferring a similar number of HTTP pages during the simulation. Mode 3 had fewer transfers per aircraft, and the number declined as the number of aircraft increased.

Response times gives insight into the behavior of the three modes. Mode 3 has the largest response times, which grows as the number of aircraft increases. Modes 2 and 4 are similar and times increase marginally with the number of aircraft.

Conclusions

- VDL Mode 3 has inherently larger delays than Modes 2 and 4
 - A single packet may be transmitted over 15 frames (1.8 s)
- Mode 3 is hindered by large overhead
 - Only 45.7% of the bandwidth is allocated to Voice/Data (3T)
- Mode 4 performs well, even though its data rate is 40% lower than Modes 2 and 3
 - Use of smaller packet sizes should increase performance
- More simulations need to be performed
 - More aircraft
 - Realistic ATN traffic
 - Multiple ground stations

Acknowledgment

The authors would like to thank the Advanced Communications for Air Traffic Management (AC/ATM) Project at NASA Glenn Research Center, Cleveland, Ohio for supporting this research